Норма содержания железа в сетевой воде

Нормы качества подпиточной и сетевой воды тепловых сетей

Обозначение: РД 34.37.504-83
Название рус.: Нормы качества подпиточной и сетевой воды тепловых сетей
Статус: действует
Дата актуализации текста: 05.05.2017
Дата добавления в базу: 01.09.2013
Утвержден: 29.09.1983 Минэнерго СССР (USSR Minenergo )
Опубликован: СПО Союзтехэнерго (1984 г. )

МИНИСТЕРСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ СССР

ГЛАВНОЕ ТЕХНИЧЕСКОЕ УПРАВЛЕНИЕ ПО ЭКСПЛУАТАЦИИ ЭНЕРГОСИСТЕМ

НОРМЫ КАЧЕСТВА
ПОДПИТОЧНОЙ И СЕТЕВОЙ ВОДЫ
ТЕПЛОВЫХ СЕТЕЙ

РД 34.37.504-83

(НР34-70-051-83)

СПО СОЮЗТЕХЭНЕРГО

Москва 1984

РАЗРАБОТАНО Всесоюзным дважды Ордена Трудового Красного Знамени научно-исследовательским институтом им. Ф.Э. Дзержинского

ИСПОЛНИТЕЛИ А.А. ПШЕМЕНСКИЙ, С.А. КЛЕВАЙЧУК

УТВЕРЖДЕНО Главным техническим управлением по эксплуатации энергосистем Минэнерго СССР 29.09.83

Главный инженер В.В.НЕЧАЕВ

НОРМЫ КАЧЕСТВА
ПОДПИТОЧНОЙ И СЕТЕВОЙ ВОДЫ
ТЕПЛОВЫХ СЕТЕЙ

Срок действия установлен

с 01.07.84 г.
до 01.07.2004 г.

(Измененная редакция, Изм. № 1, № 2).

(Вступительная часть отменена, Изм. № 3).

1. НОРМЫ КАЧЕСТВА ПОДПИТОЧНОЙ ВОДЫ ДЛЯ ОТКРЫТЫХ И ЗАКРЫТЫХ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ

1.1. Нормы качества подпиточной воды
для различных температур нагрева сетевой воды 1

Вид оборудования

Тип системы теплоснабжения

Карбонатный индекс* Ик (г-экв/м 3 ) 2 при температуре сетевой воды, ° С

* Ик — предельное значение произведения общей щелочности и кальциевой жесткости воды, выше которого в водогрейном режиме протекает карбонатное накипеобразование с интенсивностью более 0,1 г/(м 2 × ч)

** Только для сетевых подогревателей

1 При силикатной обработке подпиточной воды определение предельных концентраций кальция и сульфатов проводится с учетом температуры воды в разверенной трубе (+20 ° С) и превышения температуры воды в пристенном слое воды (+20 ° С): Тс +20 +20 ° С и суммарной концентрации сульфатов и кремниевой кислоты.

(Измененная редакция, Изм. № 1).

1.2. Нормы качества подпиточной воды для водогрейных котлов
с нагревом от 70 до 150 °С и сетевых подогревателей
с нагревом от 70 до 200 °С

Тип системы теплоснабжения

Растворенный кислород, г/м 3

Свободная углекислота, г/м 3

Значение рН

Взвешенные вещества, г/м 3

Масла и нефтепродукты, г/м 3

* Верхний предел рН достигается только при глубоком умягчении для предотвращения выпадения углекислого кальция (СаСО3).

(Измененная редакция, Изм. № 1, № 2).

2. НОРМЫ КАЧЕСТВА СЕТЕВОЙ ВОДЫ ДЛЯ ОТКРЫТЫХ И ЗАКРЫТЫХ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ

2.1. Нормы качества сетевой воды
для различных температур ее нагрева

Вид оборудования

Карбонатный индекс Ик (г-экв/м 3 ) 2 при температуре сетевой воды, ° С

* Для эксплуатируемых систем теплоснабжения, питаемых натрийкатионированной водой, карбонатный индекс не должен превышать 0,5 (мг-экв/дц 3 ) 2 для температур нагрева сетевой воды 121-150 ° С и не более 1,0 (мг-экв/дц 3 ) 2 переход на комбинированную схему водоприготовления.

** Только для сетевых подогревателей

(Измененная редакция, Изм. № 1, № 2).

2.2. Нормы качества сетевой воды для водогрейных котлов
в диапазоне температур от 70 до 150 °С и сетевых
подогревателей 70-200 °С

Тип системы теплоснабжения

Растворенный кислород, г/м 3

Свободная углекислота, г/м 3

Щелочность по фенолфталеину, г-экв/м 3

Значение рН

Содержание F е, г/м 3

Взвешенные вещества, г/м 3

Масла и тяжелые нефтепродукты,

* По согласованию с санэпидстанцией возможно 0,5 г/м 3 .

** Верхний предел — при глубоком умягчении воды

Примечание. Для поддержания заданного содержания железа в сетевой воде следует предусмотреть установку для коррекции значения рН в указанных пределах

(Измененная редакция, Изм. № 1, № 2).

3. ТРЕБОВАНИЕ К ВОДНОМУ РЕЖИМУ ТЕПЛОВЫХ СЕТЕЙ

3.1. Допускается разверка температур сетевой воды в отдельных трубах водогрейного котла не более 20 °С.

3.2. Использование для подпитки тепловых сетей продувочной воды паровых котлов или отмывочной воды ионитных фильтров не рекомендуется.

3.3. Присадка гидразина и других токсичных веществ в подпиточную и сетевую воду запрещается.

3.4. Обработка добавочной воды тепловых сетей проводится одним из следующих способов:

— известкованием с последующей коррекцией значения рН;

Н-катионированием в «голодном режиме» регенерации,

Допускается комбинирование указанных способов с Na-катионированием части обработанной воды (см. РД 34.37.506-88).

1 Рекомендуется подщелачивание.

(Измененная редакция, Изм. № 2).

3.4.1. Выбор схемы обработки добавочной воды должен определяться значением карбонатного индекса при различных вариантах значений общей щелочности и кальциевой жесткости для данной температуры нагрева в теплофикационном оборудовании.

Комбинированные схемы обработки подпиточной воды позволяют учитывать сезонный характер работы теплофикационного оборудования.

Например, для рек Днепр и Северная Двина при нагреве воды до температуры, не превышающей 110-120 °С, возможно применение 100 %-ного подкисления серной кислотой на протяжении значительной части отопительного сезона. При температуре нагрева выше этой температуры необходима дополнительная обработка части подкисленной воды Na-катионированием.

Возможно применение известкования воды с последующими коррекцией значения рН подкислением и Na-катионированием части известкованной воды.

3.4.2. При осуществлении комбинированных схем водообработки и нагреве воды выше 120 °С значение щелочности подпиточной воды целесообразно поддерживать в пределах от 2,0 до 0,4 г-экв/м 3 по РД 34.37.506-88.

(Измененная редакция, Изм. № 1, № 2).

3.4.3. Применение Na-катионирования добавочной воды как единственного способа обработки не рекомендуется.

3.5. При коррекционной обработке подпиточной воды открытых систем теплоснабжения силикатами их содержание не должно превышать 50 мг/дм 3 в пересчете на SiO2.

Значения рН при этом следует поддерживать в интервале от 8,3 до 9,0. Для закрытых систем теплоснабжения значения рН должны быть в интервале от 8,3 до 9,5. Коррекционную обработку подпиточной воды щелочными реагентами для регулирования рН на указанных уровнях следует проводить в тех случаях, когда после силикатной обработки при налаженной работе ВПУ коррозионная активность не снижается.

(Измененная редакция, Изм. № 1, № 3).

3.6. При давлении воды в водогрейных котлах, меньшем 2,0 МПа и нагреве воды до 150 °С для предотвращения интенсивного накипеобразования целесообразно поддерживать номинальные значения скорости движения воды и максимальное давление воды по условию эксплуатации водогрейных котлов.

Расчет предельной концентрации кальция при максимальной температуре нагрева воды в разверенных трубах водогрейного котла следует производить с учетом температуры пристенного слоя воды.

Например, температура нагрева воды 150 °С, разверка температур воды 20 °С, превышение температуры пристенного слоя воды над ее средней температурой 20 °С. Максимальную расчетную температуру следует принимать равной 190 °С. Произведение растворимости СаS04для этой температуры 0,4 × 10 -6 . Концентрацию сульфатов необходимо принимать с учетом дозы серной кислоты, эквивалентной устраненной части щелочности исходной воды при ее подкислении. При расчете предельной концентрации кальция приближенное значение квадрата коэффициента активности можно принять 0,5 (приложение 1).

При силикатной обработке подпиточной воды предельная концентрация кальция должна определяться с учетом суммарной концентрации не только сульфатов (для предотвращения выпадения СаS04), но и кремниевой кислоты (для предотвращения выпадения CaSiO3) для заданной температуры нагрева сетевой воды с учетом ее превышения в пристенном слоетруб котла на 40 °С.

(Измененная редакция, Изм. № 2, № 3).

3.7. Химическую очистку поверхностей нагрева водогрейных котлов следует производить при наличии отложений, количество которых превышает удельную загрязненность 1 кг/м 2 , а сетевых подогревателей — при температурном напоре, значение которого регламентируется районными энергетическими управлениями.

3.8. Периодичность химического контроля: содержания кислорода, свободной углекислоты, общей щелочности, щелочности по фенолфталеину, кальциевой или общей жесткости, значения рН в подпиточной и сетевой воде — регламентируется РД 34.37.506-88; содержания железа, взвешенных веществ, масла в сетевой воде — по усмотрению районных энергетических управлений.

(Измененная редакция, Изм. № 2).

3.9. По окончании отопительного сезона или при остановке водогрейные котлы должны быть законсервированы путем заполнения их деаэрированной очищенной водой по имевшейся схеме ее обработки или консервирующим раствором. натрия со сменой его через 30 суток.

(Измененная редакция, Изм. № 2).

3.10. В начале отопительного сезона и в послеремонтный период допускается превышение норм в течение 4 недель для закрытых систем теплоснабжения и 2 недель для открытых систем по содержанию соединений железа — до 1,0 мг/дм 3 , растворенного кислорода — до 30 мкг/дм 3 и взвешенных веществ — до 15 мг/дм 3 .

При открытых системах теплоснабжения по согласованию с органами санитарно-эпидемиологической службы допускается отступление от ГОСТ 2874-82 по показателям цветности до 70 ° и по содержанию железа до 1.2 мг/дм 3 на срок до 14 дней в период сезонных включений эксплуатируемых систем теплоснабжения, присоединения новых, а также после их ремонта.

(Измененная редакция, Изм. № 3).

3.11. Основные показатели качества воды следует определять по методикам, приведенным в справочном приложении 2 «Инструкции по анализу воды, пара и отложений в теплосиловом хозяйстве» (М.: Энергия, 1979). и нормативными документами, издаваемыми взамен указанной инструкции (ОСТ 34-70-953.1-88 — ОСТ 34-70-953.6-88 и другими нормативными документами).

(Измененная редакция, Изм. № 1, № 2).

3.12. Качество подпиточной воды открытых систем теплоснабжения (с непосредственным водоразбором) должно удовлетворять также требованиям ГОСТ 2874-82 к питьевой воде. Подпиточная вода для открытых систем теплоснабжения должна быть подвергнута коагулированию для удаления из нее органических примесей, если цветность пробы воды при ее кипячении в течение 20 мин увеличивается сверх нормы, указанной в ГОСТ 2874-82.

(Измененная редакция, Изм. № 3).

3.13. Требования к выбору схем водоподготовки и воднохимическому режиму обеспечивающему надежную эксплуатацию оборудования установлены РД 34.37.506-88 «Методические указания по водоподготовке и водно-химическому режиму водогрейного оборудования и тепловых сетей».

(Введен дополнительно, Изм. № 1).

Приложение 1

(Измененная редакция, Изм. № 1, № 2).

ПРИМЕР РАСЧЕТА
ПРЕДЕЛЬНОЙ КОНЦЕНТРАЦИЕЙ КАЛЬЦИЯ
ПРИ ОБРАБОТКЕ ДОБАВОЧНОЙ ВОДЫ ПО КОМБИНИРОВАННОЙ СХЕМЕ

(прямое подкисление серной кислотой
с Na-катионированием части подкисленной воды)

Расчет ведется для водогрейного котла при необходимости повышения подогрева от 120 до 150 °С.

Показатели качества исходной воды (г-экв/м 3 ):

Нормы качества воды в РФ. Сводная таблица.

Нормы качества питьевой воды СанПиН 2.1.4.1074-01. Питьевая вода. (ВОЗ, ЕС, USEPA).питьевой воды, расфасованной в емкости (по СанПиН 2.1.4.1116 – 02), показателей водок (по ПТР 10-12292-99 с изменениями 1,2,3), воды для производства пива и безалкогольной продукции, сетевой и подпиточной воды водогрейных котлов ( по РД 24.031.120-91), питательной воды для котлов (по ГОСТ 20995-75), дистиллированной воды (по ГОСТ 6709-96), воды для электронной техники (по ОСТ 11.029.003-80, ASTM D-5127-90), для гальванических производств ( по ГОСТ 9.314-90), для гемодиализа (по ГОСТ 52556-2006), воды очищенной (по ФС 42-2619-97 и EP IV 2002), воды для инъекций (по ФС 42-2620-97 и EP IV 2002), воды для полива тепличных культур.

В данном разделе приведены основные показатели нормативов качества воды для различных производств.
Вполне достоверные данные отличной и уважаемой компании в области водоочистки и водоподготовки «Альтир» из Владимира

1. Нормы качества питьевой воды СанПиН 2.1.4.1074-01. Питьевая вода. (ВОЗ, ЕС, USEPA).

Читайте также  Нормы уличного освещения в сельских поселениях

с.-т. – санитарно-токсикологический
орг. – органолептический
Величина, указанная в скобках, во всех таблицах может быть установлена по указанию Главного государственного санитарного врача.

Требования по микробиологическим и паразитологическим показателям воды

Требования к органолептическим свойствам воды

Требования по радиационной безопасности питьевой воды

2. Нормы качества питьевой воды, расфасованной в емкости (по СанПиН 2.1.4.1116 – 02).

СанПиН 2.1.4.1116 — 02 Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества. Показатель Ед. изм. высшая категория Первая категория Запах при 20 град. С балл отсутствие отсутствие Запах при 60 град. С балл 1,0 Цветность градус 5,0 5,0 Мутность мг/л

3.1. Оптимальные значения физико-химических и микроэлементных показателей водок

Нормируемые показатели Для технологической воды с жесткостью, моль/м 3 (максимально допустимая величина) 0-0,02 0,21-0,40 0,41-0,60 0,61-0,80 0,81-1,00 Щелочность, объем соляной кислоты концентрации с (HCl) =0,1 моль/дм 3 , израсходованной на титрование 100 см 3 воды, см 3
Водородный показатель (рН) 2,5

3.2. Нижние пределы содержания микроэлементов в технологической воде для приготовления водок

4. Нормы качества питьевой воды для производства пива и безалкогольной продукции.

Наименование Требования по ТИ 10-5031536-73-10 к воде для производства: пива безалкогольных напитков pH 6-6,5 3-6 Cl-, мг/л 100-150 100-150 SO4 2- , мг/л 100-150 100-150 Mg 2+ , мг/л следы Ca 2+ , мг/л 40-80 K ++ Na + , мг/л Щелочность, мг-экв/л 0,5-1,5 1,0 Сухой остаток, мг/л 500 500 Нитриты, мг/л следы Нитраты, мг/л 10 10 Фосфаты, мг/л Алюминий, мг/л 0,5 0,1 Медь, мг/л 0,5 1,0 Силикаты, мг/л 2,0 2,0 Железо, мг/л 0,1 0,2 Марганец, мг/л 0,1 0,1 Окисляемость,мг O2/л 2,0 Жесткость, мг-экв/л

5. Нормы качества сетевой и подпиточной воды водогрейных котлов ( по РД 24.031.120-91).

  1. В числителе указаны значения для котлов на твердом топливе, в знаменателе — на жидком и газообразном.
  2. Для тепловых сетей, в которых водогрейные котлы работают параллельно с бойлерами, имеющими латунные трубки, верхний предел рН сетевой воды не должен превышать 9,5.
  3. Содержание растворенного кислорода указано для сетевой воды; для подпиточной воды оно не должно превышать 50 мкг/кг.

6. Нормы качества питательной воды для котлов (по ГОСТ 20995-75).

* В числителе указаны значения для котлов, работающих на жидком топливе при локальном тепловом потоке более 350 кВт/м 2 [3*10 5 ккал/(м 2 *ч)], а в знаменателе — для котлов, работающих на других видах топлива при локальном тепловом потоке до 350 кВт/м 2 [3*10 5 ккал/(м 2 *ч)] включительно.
** При наличии в системе подготовки добавочной воды промышленных и отопительных котельных фазы предварительного известкования или содоизвесткования, а также при значениях карбонатной жесткости исходной воды более 3,5 мг-экв/дм 3 и при наличии одной из фаз водоподготовки (натрий—катионирования или аммоний—натрий—катионирования) допускается повышение верхнего предела значения рН до 10,5.
При эксплуатации вакуумных деаэраторов допускается снижение нижнего предела значения рН до 7,0.

7. Нормы качества дистиллированной воды (по ГОСТ 6709-96).

8. Нормы качества воды для электронной техники (по ОСТ 11.029.003-80, ASTM D-5127-90).

9.Нормы качества воды для гальванических производств ( по ГОСТ 9.314-90)

Таблица 1

* Нормы ингредиентов для воды 3-й категории определяются по ГОСТ 6709.

Примечание. В системах многократного использования воды допускается содержание вредных ингредиентов в очищенной воде выше, чем в табл.1 но не выше допустимых значений в промывной ванне после операции промывки (табл.2).

Таблица 2

  1. За основной компонент (ион) данного раствора или электролита принимают тот, для которого критерий промывки является наибольшим.
  2. При промывке изделий, к которым предъявляются особо высокие требования, допустимые концентрации основного компонента могут устанавливаться опытным путем.

Концентрации основных ингредиентов в воде на выходе из гальванического производства приведены в табл.3

Таблица 3

1.3. В гальваническом производстве следует применять системы многократного использования воды, обеспечивающие

10. Нормы качества воды для гемодиализа (по ГОСТ 52556-2006).

11. Нормы качества «Вода очищенная» (по ФС 42-2619-97 и EP IV 2002).

12.Нормы качества «Вода для инъекций» (по ФС 42-2620-97 и EP IV 2002).

13. Рекомендуемое качество воды для полива тепличных культур.

Консультации и техническая
поддержка сайта: Zavarka Team

Качество воды для котлов

В теплоэнергетике большое внимание уделяется вопросам водоочистки и водоподготовки. Качество воды в котлах имеет важное значение — от него зависит эффективность использования оборудования. Одной из важнейших задач на этапе проектирования котловой системы является точное определение химического состава и физических свойств жидкого теплоносителя.

Использование неподготовленной жидкости — не отвечающей требованиям по качеству воды для котлов — может привести к потерям мощности, а при длительной эксплуатации к неисправностям и аварийности котельной установки. Требования к теплоносителю устанавливаются действующими нормативными документами и производителями оборудования. Для каждой из его разновидностей утверждаются определенные параметры, обеспечивающие оптимальный режим работы системы.

Определение нормы качества воды котлов и ее влияние на котлы

Режимы работы теплоэнергетических установок подбираются таким образом, чтобы добиться их максимальной эффективности. В таких условиях требования к качеству используемой в котлах воды существенно возрастают, и на предприятиях организуется постоянный контроль ее химического состава по следующим показателям:

  • Прозрачность, щелочность и жесткость.
  • Содержание хлоридов, фосфатов, нитратов, соединений железа, других солей и сухого остатка.
  • Концентрация аммиака, свободной углекислоты и растворенного кислорода.
  • Показатели кислотно-щелочного баланса pH.

Исследования параметров качества питательной и подпиточной воды котлов проводятся специализированными лабораториями с использованием методик, утвержденных действующим РТМ. Анализы жидкости выполняются на основании ГОСТ 2761 с выдачей письменного заключения. Несоблюдение установленного водно-химического режима приводит к образованию на внутренних поверхностях котла и трубопроводов:

  1. Твердых нерастворимых отложений из-за наличия в теплоносителе механических примесей: ила, песка, окалины, соединений марганца и железа.
  2. Накипи. Образуется в результате снижения растворимости солей магния и кальция при нагревании воды до температуры свыше +130 °C.
  3. Коррозия. Повышенная электрохимическая активность воды вызывает разрушение пассивирующей пленки, что приводит к окислению металла и постепенному разрушению.

Отложения в теплообменниках и трубопроводах, появляющиеся из-за того, что не соблюдены требования качества воды для котлов, уменьшают их эффективное сечение и ухудшают процессы теплоотдачи. Происходит локальный перегрев оборудования, накопление усталостных изменений металла и его растрескивание. Деструктивные процессы усугубляются образованием накипи и очагов глубокой коррозии, что приводит к отказам и авариям котельных установок. Возрастают затраты на обслуживание и ремонт системы теплоснабжения.

Вода для котельных установок: основные разновидности

Основными источниками водоснабжения для теплоэнергетики являются открытые водоемы, а также скважины: артезианские и грунтовые. Вода, используемая для обеспечения работы котлоустановок и систем отопления, классифицируется согласно СП 89.13330.2012:

  1. Сырая. Водный раствор, подаваемый непосредственно из источника водополучения без предварительной подготовки.
  2. Питательная. Прошедшая водоочистку и обработку и поступающая на вход в котельную установку: по химическому составу должна соответствовать действующим нормативам.
  3. Добавочная. Очищенный водный запас, предназначенный для возмещения потерь после продувки котла, при утечках воды и пара из системы.
  4. Подпиточная. Используется для компенсации протечек воды из водопроводов и потребляющего оборудования.
  5. Котловая. Теплоноситель, непосредственно циркулирующий в котловой установке.
  6. Прямая и обратная сетевая. Жидкость, поступающая из напорной трубы и находящаяся в отрезке трубосетей от потребителя до котельной.

Чтобы выполнить требования к качеству воды в котлах, нужно провести исследование её состава. Анализ воды из открытых и подземных источников производится аккредитованной лабораторией в разные периоды года. В зимний, летний и осенне-весенний сезон качество и состав жидкости могут существенно различаться.

Качество питательной воды для котлов: основные требования и нормативная документация

Вопросы безопасности теплоэнергетических сетей в нашей стране регулируются на законодательном уровне. В частности, параметры качества очищенной воды для котловых установок устанавливаются Федеральными нормами и правилами, утвержденными приказом ФСЭТАН (Ростехнадзора) № 116 от 25.03.2014 г.

Нормы качества воды для котлов — основные показатели жидких теплоносителей — определяются нормативными документами:

  1. СанПиН 2.1.4. 2552. Вода для возмещения потерь из открытых сетей тепло- и водоснабжения.
  2. ГОСТ 20995. Питательная вода, а также используемая для снижения температуры перегретого пара методов впрыскивания.
  3. СНиП II-35-76. Вода питательная для котлоустановок паровых с рабочим давлением до 0,017 МПа и естественным типом циркуляции.

Требования к теплоносителям-жидкостям, применяемым в жаротрубных и водогрейных установках, устанавливаются заводами-изготовителями оборудования. Такие нормативы обычно указываются в руководстве по эксплуатации или в техническом паспорте. При необходимости эти данные следует запросить у компании-производителя.

Показатели качества воды для котлов

Химический состав и физические свойства теплоносителя определяются, исходя из особенностей эксплуатации теплоэнергетического оборудования. Требования к качеству жидкости по прозрачности, жесткости и концентрации растворенного кислорода устанавливаются для каждой из разновидностей котлов котловой станции:

  • Паровые (газотрубные).
  • Водогрейные.
  • Водотрубные (в том числе и бойлеры).
  • Котлоустановки высокого и низкого давления.

Точное соблюдение водно-химического режима обеспечивает бесперебойное функционирование теплоэнергетического оборудования с максимальной эффективностью. Контроль качества теплоносителя проводится периодически — это предписано требованиями технической и технологической документации.

Читайте также  Газовые котельные нормы проектирования

Котлы паровые — водный режим качества воды

Для обеспечения работы котельных установок данного типа используются разные виды топлив, в том числе и жидкие. Вода питательная для паровых котловых установок должна иметь такие характеристики:

  • Номинальная прозрачность (определяется по размеру текста лабораторным способом): не менее 40 см.
  • Жесткость воды: до 30 мкг∙экв/кг.
  • Предельное содержание кислорода: 50 мкг/кг.

Последний параметр регламентируется для котлоустановок, способных производить не менее 2 000 кг перегретого пара в час. При этом для установок с экономайзером, изготовленном из чугуна или вовсе его не имеющего, допустимая концентрация кислорода устанавливается по верхнему пределу.

Водогрейные — нормы качества воды котлов

Параметры воды для оборудования горячего водоснабжения устанавливаются раздельно для систем открытого и закрытого типов. Они регламентируются для разных рабочих температур в диапазоне от 115 до 200°C и для них установлены такие параметры:

  • Прозрачность: 40 см.
  • Показатель pH: до 8,5.
  • Содержание иных веществ: растворенного кислорода — до 50 мкг/кг; солей железа — до 500 мкг/кг;
  • нефтепродуктов — до 1,0 мг/кг.

Какие предъявляются требования к качеству воды для промышленных котлов? В сетях теплоснабжения закрытого типа возможно использование воды с минимальным уровнем pH в 7,0 и максимальным — до 11,0. Если же водогрейная котлоустановка функционирует одновременно с бойлером, у которого латунный теплообменник, данный параметр должен быть не более — 9,5.

В теплоносителе для котельных установок водогрейного типа согласно действующим нормативам не должно быть свободной углекислоты. После ремонта и при включении оборудования после долгого простоя допускается отклонение от указанных параметров на срок не более 28 дней.

Водотрубные котлы — качество воды

Теплоэнергетические установки данного типа работают на мазуте, угле или природном газе. В водотрубных котлах, рассчитанных на давление до 4,0 МПа, используют теплоносители со следующими параметрами:

  • Показатель прозрачности: 40 см.
  • Общее содержание: железа и меди — 50 мг/дм3 и 10 мг/дм 3 ; кислорода — до 100 мг/кг.
  • Количество нефтепродуктов: до 5 мг/кг.

Уровень pH для прямого и обратного сетевого теплоносителя, используемого в водогрейных котельных установках, составляет 8,5-10,5. В некоторых случаях при наличии надлежащего обоснования допускается его уменьшение до 7,0 единиц.

Нормы качества воды для прямоточных котлов

Для таких энергоустановок устанавливаются наиболее жесткие требования к качественным характеристикам применяемой воды. Основные физико-химические параметры теплоносителя:

  • Жесткость: до 1 мкг∙экв/дм 3 .
  • Электропроводимость: 0,3 мкОм/см.
  • Содержание: натрия — 5 мкг/кг; кремниевой кислоты — 1 5 мкг/кг; железа — 10 мкг/кг; кислорода — до 400 мкг/дм 3 ; меди — 5 мкг/дм 3 ; нефтепродуктов — 0,1 мг/дм 3 .

На электростанциях, укомплектованных прямоточными котельными установками с проектным давлением пара в 14 МПа, для поступающей из конденсатосборника воды допускается незначительное увеличение концентрации железа до предельного показателя 20 мкг/ дм 3 .

Качество воды для котлов высокого и низкого давления

Для парогазового оборудования, работающего вместе с высоконапорной котлоустановкой, в процессе водоподготовки достигаются исключительно высокие показатели теплоносителя. Сетевая вода для котлов, работающих под высоким давлением (до 14 МПа), должна иметь параметры:

  • Жесткость удельная: до 7 мкг∙экв/кг.
  • Содержание общего железа: не более 20 мкг/кг.
  • Концентрация растворенного кислорода: до 10 мкг/кг.
  • Солесодержание: до 200 мкг/кг.
  • Удельная электропроводность : до 1,5 мкОм/см.
  • Количество нефтепродуктов: не свыше 0,3 мг/кг.

Качество исходной воды для котлов не может превышать эти значения, указанные в стандартах. Для котлоустановок низкого давления (до 4 МПа) параметры качества теплоносителя менее жесткие по содержанию некоторых примесей. Также не регламентируется солесодержание, электропроводность и концентрация нефтепродуктов.

Уровень pH в подготовленной воде при температуре 25 °C и нормальном атмосферном давлении должен быть в пределах от 9,0 до 9,2. Для парогенераторов, работающих на природном газе (метане), допускается превышение нормативов по общему содержанию железа на 50% от указанных.

Влияние качества воды на котлы

Важно соблюдать нормы качества питательной воды и пара котлов. Высокое качество сетевой, питательной, подпиточной и котловой воды обеспечивает сохранение ресурса котельной установки и снижение затрат на ее содержание и обслуживание. Для каждой из разновидностей котлов: парового, водогрейного, водотрубного и прямоточного необходим теплоноситель с определенными показателями. Соответствие его установленным нормативным требованиям к качеству воды по эксплуатации котлов позволит добиться максимальной эффективности теплоэнергетического оборудования.

Качество подпиточной воды и сетевой. Нормы и требования

Какими документами регламентируется качество подпиточной и сетевой воды? Нормы и требования для жидкостей в различных системах теплоснабжения. Как качество сетевой воды влияет на состояние трубопроводов и эффективность оборудования. Какие компоненты сетевой водной среды способны вызывать коррозию труб и образование накипи. Предельно-допустимые концентрации компонентов водной среды в открытых и закрытых системах теплоснабжения. Качество подпиточной и сетевой воды оказывает определённое влияние на состояние тепловых сетей. Нормы и требования к подпиточной воде позволяют поддерживать такой состав жидкости, при котором будет обеспечиваться бесперебойная и эффективная работа сетей теплоснабжения населённого пункта.

Качество подпиточной воды

Обычная вода в наших трубопроводах, а также вода из природных водоёмов содержат множество примесей в виде газов, коллоидных компонентов, растворённых солей, плавающих частиц и т.д. Все эти вещества могут приводить к коррозии стенок труб и оборудования, способствовать образованию шлама в водной среде, а также вызывать накипь на разных частях систем теплоснабжения. Всё это значительно сокращает срок службы трубопроводов и технических систем, уменьшает проходимость труб, способствует снижению теплоотдачи, приводит к пережиганию деталей в котлах.

Чтобы избежать таких неприятностей в качестве жидкости для тепловых сетей, а также воды для пополнения потерь и растрат водной среды (пар, конденсат) используется специальная подпиточная жидкость. Она применяется не только в сети теплоснабжения, но и в работе ТЭЦ, а также в котельных.

Качество данной жидкости регламентируется концентрацией всевозможных примесей. Оно строго нормируется и соответствует техническим и санитарно-гигиеническим нормам.

Подпиточная и сетевая жидкость должны соответствовать таким требованиям:

  • Водная среда не должна способствовать развитию коррозионных процессов в трубопроводах.
  • Также вода не должна приводить к образованию накипей на поверхностях.
  • Уровень очищения подпиточной и сетей воды напрямую связан с водно-химическими режимами в сетях. При повышении давления и температуры в сети увеличивается скорость коррозионных процессов и образования накипи. Но стоит учитывать и то, что в некоторых ситуациях накипь на поверхности труб может защищать их ржавления.

Полное устранение накипи и коррозии возможно только при полном очищении водной среды от примесей. Но на практике добиться этого очень сложно. Потребуются большие расходы и трудозатраты. По этой причине очистка подпиточной и сетевой водной среды выполняется лишь до некоторой степени. Нормы по степени очистки данной жидкости обусловлены конкретными условиями и являются финансово обоснованными.

Нормы качества подпиточной воды

  1. Основной причиной накипеобразования и образования шлама, возникающих при соответствующих температурных показателях водной среды, является разложение бикарбонатных компонентов воды, а именно растворённых кальциевых и магниевых солей. В итоге образуются монокарбонаты, которые выпадают в осадок и собираются на внутренних поверхностях труб в форме накипи.

Чтобы нормировать концентрацию данных солей описываются показатели жёсткости водной среды, которые делятся на несколько видов:

  • Временную (карбонатную), определяющуюся по концентрации бикарбонатов в водной среде.
  • Постоянную (некарбонатную), определяющуюся по содержанию труднорастворимых солей в воде.
  • Суммарную (общую). Определяется по общему содержанию всех видов солей.
  1. За коррозию трубопроводов и оборудования отвечают, содержащиеся в воде газы, а именно двуокись углерода и кислород. Катализаторами в данной реакции выступают такие составляющие водной среды, как соли соляной и серной кислоты. Степень коррозии напрямую связана с концентрацией кислорода в жидкости.

Ещё одни вещества, находящие в составе воды и вызывающие коррозию, – это хлориды и сульфаты. Данные компоненты водной среды способны растворять карбонатную защитную плёнку на внутренней поверхности труб, что даёт доступ для ржавчины.

Нормы и требования к качеству сетевой и подпиточной воды в системах отопления

Качество сетевой и подпиточной воды регламентируется правилами технической эксплуатации ТЭС и сетей. Вместе с техническими нормами на подпиточную и сетевую жидкость учитываются и санитарно-гигиенические требования для данных водных сред. Так, в данной воде не должны присутствовать токсичные для людей соединения. А для сетей с непосредственным водозабором показатели приравниваются к питьевой воде.

Если вы хотите проверить качество подпиточной или сетевой воды, то можете заказать такой анализ в нашей лаборатории. Для этого вам нужно связаться с нами по телефонам, указанным на сайте. Стоимость проверки водной среды зависит от количества анализируемых показателей жидкости.

Нормы качества сетевой и подпиточной воды водогрейных котлов, организация водно-химического режима и химического контроля (стр. 5 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6

Количество миллилитров 0,1 н. кислоты, израсходованной на титрование пробы по фенолфталеину (при объеме пробы 100 мл), численно соответствует щелочности по фенолфталеину Щфф в миллиграмм-эквивалентах на килограмм.

Количество миллилитров 0,1 н. кислоты, израсходованной суммарно на титрование пробы по фенолфталеину и метилоранжу или по фенолфталеину и смешанному индикатору, численно соответствует общей щелочности воды Щоб в миллиграмм-эквивалентах на килограмм.

3.5.3 Определение карбонатной щелочности

3.5.3.1. Карбонатная щелочность (Щк) подпиточной и сетевой воды определяется для того, чтобы по графику на черт. 1 найти в зависимости от температуры воды нормируемую величину карбонатной жесткости.

3.5.3.2. Карбонатная щелочность определяется расчетом на основании известных значений щелочности по фенолфталеину Щфф и общей щелочности Щоб, найденных аналитически согласно п. 3.5.2.

В зависимости от соотношения Щфф и Щоб значение карбонатной щелочности определяется приближенно по одной из формул, приведенных в табл. 11.

Определение карбонатной щелочности в зависимости от щелочности общей и щелочности по фенолфталеину

Читайте также  Норма посадки дерева от дома

Соотношение Щфф и Шоб

Расчетное значение Щк

Щфф 0,5Щоб

Щк =2(Щоб — Щфф)

Щфф = Щоб

Примечание. Расчет по данным формулам допустим при содержании в исследуемой воде фосфатов не выше 1 мг/кг . При большем co д ep жании в исследуемой воде вводится поправка на величину щелочности, обусловленную содержанием фосфатов.

3.5.4. Определение общей и кальциевой жесткости

3.5.4.1. Трилон Б (кислая двузамещенная натриевая соль этилендиаминотеграуксусной кислоты) при рН>9 связывает во внутрикомплексные соединения катионы кальция и магния. Некоторые красители (кислотный хром темно-синий, эриохром черный ЭТ-00) дают с катионами солей жесткости непрочные окрашенные соединения красного цвета. При добавлении в воду с подобными окрашенными соединениями раствора трилона Б в эквивалентной точке происходит их полное разрушение с изменением цвета раствора на синий. В присутствии ионов цинка или меди (неотчетливый переход окраски) определение жесткости производят с прибавлением раствора сульфида натрия, связывающего эти катионы в нерастворимые сульфидные соединения. Влияние ионов марганца, приводящего к быстрому обесцвечиванию окраски, устраняют прибавлением к пробе раствора солянокислого гидроксиламина.

3.5.4.2. Для выполнения аналитического определения необходимы следующие реактивы:

0,05 н. раствор трилона Б;

0,005 н. раствор трилона Б;

аммиачный буферный раствор; 20 г химически чистого хлористого аммония растворяют в дистилляте, добавляют 100 мл концентрированного раствора аммиака (химически чистого плотностью 0,91) и разбавляют до 1 л дистиллятом;

кислотный хром темно-синий; 0,5 г индикатора растворяют в 10 мл аммиачного буферного раствора и разбавляют до 100 мл этиловым спиртом;

2 н. раствор едкого натра (приблизительная концентрация);

10%-ный раствор сернистого натрия (хранить в полиэтиленовой посуде и не более двух недель);

2%-ный раствор солянокислого гидроксиламина.

3.5.4.3. При жесткости более 100 мкг-экв/кг в процессе аналитического определения следует соблюдать следующую последовательность операций: 100 мл пробы помещают в коническую колбу, прибавляют 5 мл аммиачного буферного раствора, пять-семь капель индикатора кислотного хром темно-синего и медленно титруют при постоянном перемешивании 0,05 н. раствором трилона Б до отчетливого изменения цвета на синий.

Количество миллилитров 0,05 н. раствора трилона Б (пошедшего на титрование пробы), деленное на два, численно соответствует общей жесткости Жоб воды в миллиграмм-эквивалентах на килограмм. При нечетком переходе окраски или ее обесцвечивании определение повторяется с предварительным прибавлением 0,5 мл раствора сернистого натрия для устранения мешающего действия ионов меди и цинка или с прибавлением трех капель раствора солянокислого гидроксиламина для устранения мешающего действия соединений марганца.

3.5.4.4. При жесткости менее 100 мкг-экв/кг в процессе аналитического определения следует соблюдать следующую последовательность операций: 100 мл пробы помещают в коническую колбу, прибавляют 5 мл аммиачного буферного раствора, пять-семь капель индикатора кислотного хром темно-синего и медленно титруют при постоянном перемешивании 0,005 н. раствором трилона Б из микробюретки с размером капли не более 0,05 мл до изменения окраски. Количество миллилитров 0,005 н. раствора трилона Б (пошедшего на титрование пробы), умноженное на 50, определяет общую жесткость воды в микрограмм-эквивалентах на килограмм.

3.5.4.5. Путем повышения рН пробы до 12 за счет добавления раствора едкого натра можно практически полностью осадить магний в виде Mg(OH)2 и далее в присутствии индикатора хром темно-синего оттитровать кальциевую жесткость ЖСа. Для этого 100 мл анализируемой воды отбирают в коническую колбу, прибавляют 2 мл 2 н. раствора едкого натра, через 5 мин вводят три капли раствора индикатора хром темно-синего и титруют пробу 0,05 н. раствором трилона Б до перехода ее цвета от розово-красного к фиолетово-голубому. Количество миллилитров 0,05 н. раствора трилона Б (пошедшего на титрование), деленное на два, численно соответствует кальциевой жесткости ЖСа в миллиграмм-эквивалентах на килограмм.

3.5.5. Определение карбонатной жесткости

3.5.5.1. Карбонатная жесткость Жк устанавливается расчетом на основании предварительно аналитически определенных значений общей жесткости Жоб по п. 3.5.4 и общей щелочности Щоб по п. 3.5.2.

При этом возможны два случая:

1) Жоб больше Щоб. В этом случае карбонатная жесткость Жк принимается равной щелочности общей Щоб:

Жк = Щоб;

2) Жоб меньше Щоб. В этом случае карбонатная жесткость Жк принимается равной жесткости общей Жоб:

Жк = Жоб.

3.5.5.2. Если в состав общей щелочности Щоб анализируемой сетевой или подпиточной воды входит карбонатная щелочность Щк, определяемая по п. 3.5.3 настоящего раздела РД (это возможно только при рН больше 8,3, что соответствует наличию щелочной реакции воды при добавлении индикатора фенолфталеина), нормативно допустимое значение карбонатной жесткости устанавливается по черт. 1. Для этого на горизонтальной оси графика находят точку, соответствующую аналитически найденному значению Щк по п. 3.5.3. От указанной точки проводится вертикаль до точки пересечения с кривой, соответствующей фактической температуре сетевой воды на выходе из водогрейного котла t (°C).

На вертикальной оси находят искомое значение предельно допустимой карбонатной жесткости в микрограмм-эквивалентах на килограмм.

Например: Щк = 3 мг-экв/кг; t = 150°С. По черт. 1 находим: Жк » 60 мкг-экв/кг.

3.5.6. Определение содержания хлоридов

3.5.6.1. После, связывания хлор-ионов азотнокислым серебром образуется хлористое серебро (белый осадок); при этом первые избыточные капли реактива в присутствии хромовокислого калия в нейтральной (по фенолфталеину) среде приводят к появлению бурой окраски хромовокислого серебра.

3.5.6.2. Для выполнения аналитического определения необходимы следующие реактивы:

0,0282 н. раствор азотнокислого серебра (хранить в коричневой склянке);

0,1 н. раствор серной кислоты;

10%-ный раствор калия хромовокислого;

1%-ный спиртовый раствор фенолфталеина.

Рекомендуемый объем пробы для анализа

Стандарты содержания железа в воде для питья

В нормативных таблицах СанПиН норма содержания железа в питьевой воде суммарно в предельных концентрациях не должна превышать 0,30 мг/л. По постановлению главсанврача на определённой территории и для конкретной системы водоснабжения этот норматив может быть поднят до единицы (Fe=1).

Содержание статьи

Международные требования ВОЗ, и нормативы американского Агентства USEPA устанавливают те же величины в 0,30 мг/л, а ЕС-директива – более строгий норматив в 0,20 мг/л. Часто это объясняется тем, что избыток железа может значительно навредить здоровью, сопровождаясь повышением риском инфарктов и заболеваний печени при длительном превышении установленных норм. Однако основной источник поступление этого металла в человеческий организм не вода.

Свойства железа в воде и влияние на организм

Развитые страны применительно к своим типичным рационам ведут статистику, согласно которой поступление железа в организм оценивается в пределах 15-22 мг в сутки. Основные источники поступления по отношению к распространённости в исследованных рационах:

  • крупы со средним значением Fe = 0,02950 мг/г,
  • мясные продукты со средним значением 0,02620 мг/г.

Есть данные, что при кипячении уровень содержания данного металла в продуктах снижается. Однако он может достигать более высоких концентраций при приготовлении в железной посуде или при контролируемом обогащении им продуктов.

Сравнивая эти диетологические показатели с нормой, можно отметить, что они даже немного завышены, поскольку минимальная суточная потребность Fe в разных оценках указывается в пределах 7-14 мг с выходом за эти пределы, например, в периоды беременности, когда суточная потребность женщин часто превышает 15 мг/сутки. В целом среднесуточная норма оценивается в 10 мг.

Нормально работающая система организма участвует в регулировании усвояемости данного металла, всасывая из поступающей с рационом порции в среднем 10%. Из них:

  • 60-70% идёт на выработку гемоглобина,
  • 5% в процессе выработки миоглобина утилизируется,
  • 25-35% сохраняется в печени, селезёнке, костном мозге.

Переизбыток железа характеризуется поражением тканей (состояние гематохроматоза), однако это редко происходит при стандартном традиционном рационе. Более значительную опасность в этом смысле представляет приготовление «кислой» пищи в железной посуде или передозировка в таблетках.

Присутствие Fe в воде и проблемы для водопроводных систем

В поверхностных водах чаще отмечается присутствие Fe III – железа в трехвалентном состоянии, которое называют коллоидным. При хорошей аэрации концентрация редко достигает высоких значений. (Аэрация – один из методов удаления растворённого железа наряду окислительным обезжелезиванием, мембранным, электромагнитным и др. методами). В подземных водах и резервуарах при отсутствии карбонатов и сульфидов часто происходит накопление Fe II – двухвалентного до концентраций порядка 1 мг/л и более.

Даже при соблюдении содержания железа в воде в норме и установленных характеристик рН соли двухвалентного Fe становятся нестабильны, выпадая в осадок ржавого цвета в виде гидроксида Fe. (Особенно часто это происходит в распределительных системах). Жены бывают разные и далеко не все они такие уж ухоженные и милые, как во время женитьбы. Это, правда, не касается всех и не заблуждайтесь даже в том, что супруги не бывают шикарными! Наше выборное HD порно с красивой женой даст возможность взглянуть на еблю с отпадными девушками и женщинами всех легальных возрастов и народов. Выборка жанров от ванили до чего-то пикантного вроде сексвайф и групповушки доступна каждому!

  • меняется окраска воды в сторону красно-коричневого оттенка; гидропоток подкрашивается сам и даёт характерный цвет белью и арматуре,
  • ухудшается вкус,
  • развиваются т.н. «железобактерии» – микроорганизмы, развивающиеся при окислении двухвалентного Fe в трехвалентное, при этом процесс сопровождается возникновением илистых отложений на стенках трубопроводов,
  • в некоторых отраслях (например, в текстильной промышленности) происходит отбраковка продукции даже при небольшом превышении отраслевой нормы,
  • возникает засорение трубопроводов с постепенным снижением тока воды.

Ток воды в квартирах в целях экономии хозяева иногда замедляют и сознательно. Однако чаще всего это делается с помощью специальных экономителей, которые при объективном уменьшении водорасхода не снижают степени комфорта при повседневном использовании воды, а даже расширяют возможности (см. http://water-save.com/ ).